Med-Practic
Посвящается выдающемуся педагогу Григору Шагяну

События

Анонс

У нас в гостях

Aктуальная тема

 

Медицинский Вестник Эребуни 1-4.2004 (17-20)

Преимущества применения деминерализованных ксеногенных костных трансплантатов

Ключевые слова: костные трансплантаты, деминерализованный костный матрикс, ксеногенный трансплантат.

Лечение огнестрельных ранений конечностей, осложнений и их последствий остаются одной из актуальных проблем хирургии. Это обусловлено тем, что ранения конечностей составляют довольно высокий процент из числа огнестрельных ранений, и большинство из них сопровождаются переломами и дефектами костей. В настоящее время остается открытым вопрос восполнения костных дефектов при огнестрельных ранениях, воспалительно-деструктивных заболеваниях, постоперационных (при удалении новообразований) дефектах и других деструкциях длинных трубчатых костей, т.к. не всегда костная ткань самостоятельно полностью восстанавливается или же не отмечается оптимальных темпов восстановления кости без вмешательства извне. Сложность данных патологий заключается в полиморфии патологических состояний, приводящих к появлению дефектов длинных трубчатых костей и в ограниченном количестве методов лечения, способных в короткие сроки с достаточным качеством восстановить поврежденную кость. Компрессионно-дистракционный остеосинтез, ауто- и аллотрансплантация, применение различных синтетических имплантатов и стимуляторов остеогенеза не могут в полном объеме решить эту проблему. Все вышесказанное, а также постоянно увеличивающееся количество больных с подобной патологией определяют необходимость совершенствовать применяемые и разрабатывать новые методы заживления поврежденных длинных трубчатых костей со значительными дефектами. Снижение или недостаточность собственных потенций организма к остеогенезу в условиях репаративной регенерации при обширных костных дефектах побуждает искать пути дополнительного пролонгированного стимулирования остеосинтеза во время всего периода репарации. Следовательно, решение проблемы заживления поврежденных длинных трубчатых костей со значительными дефектами возможно при применении имплантатов, обладающих достаточной стимуляционной активностью, индуцирующих остеогенез и резорбирующихся в течение времени, необходимого для завершения репаративной регенерации с формированием полноценной в структурном и функциональном отношении кости. Литературные данные свидетельствуют о наличии материалов, в достаточной степени отвечающих поставленным требованиям, для использования в качестве трансплантатов, каждые из которых имеют свои положительные и отрицательные стороны.

 

Выделяют пять основных направлений пластики костных полостей: аутопластика, аллопластика, ксенопластика, имплантация и применение комбинированных трансплантатов (тканей и небиологических субстратов). Требованиями к материалу для местной оптимизации репаративного остеогенеза являются высокая остеогенная потенция, отсутствие антигенности, простота получения, удобная для клинического применения геометрическая форма, постоянная доступность, экономическая выгодность [2–5,12,37,39].


Существуют четыре основных механизма воздействия на процессы регенерации кости.

 

  1. Остеобластический остеогенез, стимулируемый трансплантацией детерминированных остеогенных продромальных клеток, обладающих потенцией образования костной ткани. Данный механизм известен в связи с пересадкой аутогенной губчатой кости.
  2. Остеокондуктивный остеогенез развивается при пересадке аллогенных костных трансплантатов или синтетических заменителей кости, которые выполняют роль остова для прорастания кровеносных сосудов, в то время как происходит врастание клеток из костного ложа за счет активации собственных детерминированных остеогенных клеток. В результате аллогенный трансплантат резорбируется и постепенно замещается новой костью (гидроксилаппатит кальция).
  3. Остеоиндуктивный остеогенез происходит через фенотипическое преобразование неспецифических индуцибельных остеопродромальных клеток под влиянием гуморальных факторов, в частности костного морфогенетического белка (деминерализованный костный матрикс).
  4. Стимулированный остеогенез (остеостимуляция) – это воздействие теми или иными факторами, которые способствуют усилению уже протекающих процессов остеогенеза, то есть стимулируют их (например, фактор роста). Известно большое число веществ гормональной природы, регулирующих метаболические и регенераторные процессы в костной и других тканях [1]. В частности, костная ткань содержит костные морфогенетические протеины (bone morphogenetic proteins – BMPs), трансформирующий бета-фактор роста (transforming growth factor beta – TGF-J3), эпидермальный фактор роста (platelet derived growth factor - PDGF), инсулиноподобные факторы роста I и II (insulin-like growth factor I and II – IGF-I and IGF-II), основной и кислотный факторы роста фибробластов (basic and acidic fibroblast growth factor – bFGF and aFGF) [34]. Несмотря на то что факторов роста относительно немного, они, комплексируясь с цитоплазматическими рецепторами клеток-мишеней, активируют внутриклеточные ферменты, многоступенчатую (каскадную) систему, конечным продуктом которой могут быть несколько биологически активных соединений, регулирующих внутри- и внеклеточный метаболизм [1]. Все перечисленные факторы роста, кроме некоторых морфогенетических протеинов, изменяют клеточный метаболизм и только ВМР-2, ВМР-3, ВМР-4, ВМР-6, ВМР-7 (ОР-1) изменяют путь дифференциации различных полипотентных мезенхимальных клеточных линий в остеобластическую [18,19,43].

 

Таким образом, локальное применение различных факторов роста воздействует на пролиферацию, дифференциацию и синтез белковых структур в культурах остеобластов и образование костной ткани в различных моделях на животных, включая экспериментальные переломы и дефекты костей [35]. В настоящее время факторы роста коммерчески доступны и применяются в некоторых странах в клинической практике; однако малое количество их в костной ткани, трудность выделения и очистки, невозможность генноинженерного синтеза некоторых из них (например BMPs, ввиду не вполне ясной химической структуры), и поэтому исключительная дороговизна, делают применение этих факторов практически недоступными в экспериментальной и клинической травматологии и ортопедии.

 

Применение деминерализованного костного матрикса (ДКМ) в качестве пластического материала для замещения дефектов костей скелета человека насчитывает несколько десятков лет. Впервые деминерализованную кость, полученную как этап приготовления кости для трансплантации, использовал Senn в 1889 году в эксперименте на собаках. Применение ДКМ началось с Urist M.R., который в 1965г. систематизировал (способы получения, обработки, консервации), описал и экспериментально применил методику трансплантации ДКМ. Исследования в этой области проводились в нескольких основных направлениях: заготовка материала [17,22,24,26,30,31,37, 39, 42], стерилизация и консервация [2–5,10,12, 20,25], остеоиндукция [11,13,16,20,29,37].

 

ДКМ в различной форме находит практическое применение во многих областях хирургического лечения поврежденных костей. В стоматологии, челюстно-лицевой хирургии, отоларингологии, травматологии и нейрохирургии применяются различные формы деминерализованной или частично деминерализованной аллокости [32]. Столь обширная область применения этого материала обусловлена набором уникальных свойств деминерализованного матрикса.

 

В ДКМ механизм управления остеогенезом объединяет остеоиндукцию и остеокондукцию [36,39]. Остеоиндукция вызывается белковыми субстанциями (морфогенетическим костным белком – BMP), находящимися во внеклеточном пространстве костной ткани. Анализ результатов других работ в этой области показывает, что белок состоит из нескольких субъединиц (по разным данным 4 или 5). Морфогенетическими свойствами обладает только одна из его составляющих, являющаяся гидрофобным гликопротеидом [40]. Биологическую активность в максимальной степени проявляет кислоторастворимая форма КМБ [11]. Чем больше в кости кислоторастворимой формы КМБ, тем ее остеоиндуктивная активность выше. При деминерализации значительная часть кислоторастворимой формы КМБ теряется. Исходя из этого, можно сделать вывод, что на остеоиндуктивность ДКМ в значительной степени влияет время нахождения в кислоте [11,40], а также вид применяемой кислоты. В ряде исследований Савельева В.И. и Хлебович Н.В. (1993) было отмечено, что ДКМ, полученный деминерализацией кости ортофосфорной кислотой, проявлял более высокие остеоиндуктивные свойства, чем ДКМ после деминерализации кости с помощью хлористоводородной и бромистоводородной кислот. С другой стороны, деминерализация кости в растворах серной, азотной, азотистой, хромовой кислот приводила к полной утрате остеоиндуктивных свойств имплантатов [13,37,41].

 

Если в проблеме выбора кислот, оптимальных для деминерализации, имеется определенная общность взглядов у большинства исследователей, то относительно степени деминерализации кости, которая подготавливается для использования в качестве имплантата, такого единства пока не наблюдается. Деминерализацию кости можно проводить, достигая различной степени выведения минеральной фазы из нативной кости. По В.И. Савельеву (1983), деминерализация делится на полную (тотальную), частичную (поверхностную) и сегментарную (избирательную). Последняя предложена В.И. Савельевым для получения имплантатов с заранее заданными прочностными свойствами. Исследованиями Kakiuchi и Опо (1987) показано, что при гетеротопической имплантации поверхностно деминерализованная кость превосходит полностью деминерализованную костную ткань, а при их ортотопической имплантации не наблюдается никаких различий. Mundy et al. (1978) предполагают, что для стимуляции процесса резорбции необходимо наличие минералов, однако, эксперименты других авторов [24,28,30] указывают на значительно большую скорость рассасывания полностью деминерализованных имплантатов, что, по-видимому, демонстрирует наличие минерального остатка в так называемой полностью деминерализованной кости. В исследованиях Сингхольм Г. с соавт. (1993) отмечено, что полностью ДКМ значительно эффективней частично деминера-лизованного в модели заживления дефекта лучевой кости кролика. ДКМ как пластический материал обладает набором важных качеств: относительная легкость приготовления, простота обработки, возможность консервирования различными способами, длительность хранения. Особый интерес у специалистов вызывает наличие у ДКМ способности обеспечивать остеогенез не только в костном ложе, но и при подкожной и внутримышечной пересадке, что объясняется наличием у ДКМ остеоиндуктивных свойств [15,31,37]. В 1965г. Urist M.R. в эксперименте показал, что не деминерализованная кость оказывает незначительный остеоиндуктивный эффект, по сравнению с деминерализованной. Деминерализация, по мнению многих исследователей, способствует проявлению остеоиндуктивности в ДКМ [22,31,37].

 

Немецкий центральный тканевой банк производит полностью ДКМ человека [42], a в США (Pacific Coast Tissue Bank – Лос-Анжелес) – поверхностно деминерализованную кортикальную кость [24]. В эспериментальных и клинических работах В.И Савельева (1983–1996) применяется деминерализация кости различной глубины, в зависимости от конкретного клинического применения или вида экспериментального исследования. Очевидно, такой подход наиболее приемлем, но требует дальнейшей детальной разработки.

 

Незрелая костная ткань новорожденных животных так же, как и фетальная кость, содержит большое количество факторов роста (в частности, TGF-p, FGF и BMPs – [21,23]) и имеет сходное строение и биохимический состав. Учитывая это, а также ограниченную доступность фетальной аллокости, нативная незрелая костная ткань новорожденных животных (например, незрелая костная ткань новорожденных свиней) может быть источником получения материала для стимуляции репаративной костной регенерации. В то же время применение незрелой костной ткани новорожденных животных (в деминерализованной форме), по данным литературы, отмечено в единичных случаях, только в экспериментах для оценки остеоиндуктивности ДКМ от доноров разного возраста или в нативном виде, в сравнении с фетальной костной тканью [27]. Стимулирующее действие незрелой костной ткани новорожденных животных, очевидно, связано с наличием в ее составе факторов роста в количестве, сопоставимом с фетальной костной тканью, относительно легкой резорбцией (более быстрой, чем у алло). В то же время ограниченный объем доступных литературных данных, касающихся этого вида имплантируемого материала, определяет необходимость экспериментальной оценки его влияния на репаративную регенерацию поврежденных длинных трубчатых костей со значительными дефектами.

 

В связи с этим целесообразно проведение экспериментальных исследований, направленных на изучение влияния фрагментированной нативной незрелой деминерализованной костной ткани новорожденных свиней со специфической формой и способом его установки, на репаративную регенерацию поврежденных длинных трубчатых костей со значительными дефектами.

 

В настоящее время на международном рынке имеется определенный перечень готовых препаратов из ксеногенной костной ткани, которые получают в результате довольно сложной, трудоемкой и дорогостоящей обработки, например препарат Bio-Oss, Bio-Guide и др. предлагаемого фирмой Geistlich Pharma, Швейцария, которые имеют довольно высокую стоимость на нашем рынке. Предлагаемая нами ДККТ выгодно отличается и не уступает другим трансплантатам своими остеогенными свойствами. К положительным качествам данного типа трансплантатов относятся:

 

  1. Доступность первичного материала (сырья), т.к предлагаемый нами трансплантат получается из трубчатых и плоских костей свиней.
  2. Доступность метода получения: ДККТ получается в результате обычной деминерализации в растворах неорганических кислот по методике, предложенной В.И. Савельевым.
  3. Экономическая выгодность получения – из вышеизложенного ясно, что и первичное сырье, и реагенты являются доступным и дешевым материалом.
  4. Высокая остеоиндуктивность препарата доказана на примере уже достаточно глубоко изученной аллогенной деминерализованной костной ткани, а также экспериментального материала (действующим началом является тот же морфогенетический белок).
  5. Низкая антигенность – т.к. при заготовке препарата используются новорожденные поросята, ткани которых имеют довольно низкую антигенность для человека, которая более снижается при обработке соляной кислотой.
  6. Возможность интраоперационного моделирования трансплантата определенной необходимой формы.
  7. Гетеротопический остеогенез – отмечается рост костной ткани при гетеротопической трансплантации.
  8. Легкость обработки – нет необходимости соблюдать строгие антисептические условия при заборе материала, т.к. затем проходит обработку в растворе соляной кислоты, и консервируется в растворе формалина.
  9. Отсутствует риск передачи инфекции от донора реципиенту, благодаря сильным антисептическим свойствам соляной кислоты и последующей консервации в формалине.

 

В заключение считаем необходимым добавить, что доступность и невысокая себестоимость рекомендуют применение данного вида трансплантата, когда приобретение дорогостоящих препаратов затруднено.
Из вышеизложенного становится ясно, что преимущества данного вида трансплантата рекомендуют его для широкого использования в клинике. Конечно же невозможно достигнуть эффективности применения аутогенных костных трансплатнатов, но деминерализованные ксеногенные костные трансплантаты являются достойным заменителем других видов трансплантатов с довольно высокими остеогенными свойствами.

 

Литература


  1. Балаболкин М.И. Эндокринология. М. 1998, с. 581.
  2. Савельев В.И. Деминерализованная кость как особая разновидность костно-пластического материала. Заготовка и пересадка деминерализованной костной ткани в эксперименте и клинике. Л., 1983, с. 3.
  3. Савельев В.И. Заготовка и консервация деминерализованных костных трансплантатов. Метод. рекомендации. Л., 1984, с. 14.
  4. Савельев В.И. Опыт заготовки и применения деминерализованных костных трансплантатов. Трансплантация, деминерализация костной ткани при патологии опорно-двигательной системы. Л., 1990, с. 4.
  5. Савельев В.И., Андрианов В.Л., Румянцев В.В. и др. Некоторые аспекты заготовки и применения деминерализованных костных трансплантатов. Повреждения и заболевания опорно-двигательного аппарата. Л., 1982, с. 71.
  6. Савельев В.И., Сивков С.Н. Наш опыт заготовки деминерализованных костных трансплантатов. Ортопедия, травматология и протезирования, 1986, 8, с. 22.
  7. Савельев В.И., Сысолятин П.Г., Тулупова И.Г. Деминерализованный костный трансплантат и его применение в стоматологии. Обзор литературы. Медицинский реферативный журнал, разд. XII, 1987, 9, с. 1.
  8. Савельев В.И., Этитейн Ю.В., Сысолятин П.Г. и др. Заготовка и применение декальцинированного аллогенного костного матрикса в костнопластической хирургии. Бюлл. СО АМН СССР, 1987, 2, с. 41.
  9. Сингхольм Г., Гендлер Е., МакКеллон Г., Маршалл Г., Мур Т., Сармиенко А. Остеоиндуктивные свойства перфорированных костных трансплантатов, деминерализованных соляной кислотой и стерилизованных окисью этилена. Деминерализованный костный трансплантат и его применение. СПб, 1993, с. 25.
  10. Скрипнюк М.А. Способ извлечения клеток костного мозга и консервирующих растворов из губчатого трансплантата. А.С.СССР №952189, 1982, Бюлл. 31, с. 16.
  11. Сумароков Д.Д. и др. Изменение остеоиндуктивной активности костного матрикса в онтогенезе. Онтогенез, 1988, т. 19, 5, с. 568.
  12. Фейгельман С.С. О видимости сохранения жизни в тканях, консервированных в слабых растворах формалина. Ортоп.травм., 1980, 12, с. 45.
  13. Фриденштейн А.Я., Лалыкина К.С. Индукция костной ткани и остеогенные клетки предшественники. М.: Медицина, 1973, с. 223.
  14. Ханамирян Т.В., Саркисян А.М., Туманян Г.А. Изучение специфики замещения дефекта трубчатой кости в зависимости от вида биотрансплантата. II съезд травматологов и ортопедов Республики Армения (тезисы докладов). Ереван, 1996, с. 127.
  15. Ханин А.А. Эктопический остеогенез в формалинизированном костном матриксе. Ортопедия, Травматология, 1977, 3, с. 34.
  16. Хлебович Н.В. Экспериментальная модель для сравнительного изучения остеоиндуктивных свойств костных трансплантатов. Трансплантация деминерализованной костной ткани при патологии опорно-двигательной системы. Л., 1990, с. 41.
  17. Шумада И.В., Скрипнюк П.А., Кривенко В.М. Способ насыщения костных трансплантатов медикаментами. А.С.СССР, №606584, 1978, Бюлл. 18, с. 8.
  18. Ahrens M., Ankenbauer T., Schroder D. et al. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages, DNA Cell Biol., 1993,v. 12, p. 871-880.
  19. Amedee J., Bareill R., Rouais F. et al. Osteogenin (BMP) inhibits proliferation and stimulates differentiation of osteoprogenitors in human bone marrow, Differentiation, 1994, v. 58, p. 157-164.
  20. Buring K., Urist M.R. Effects of ionizing radiation on the bone induction principle in the matrix of bone implants, Clin. Orthop., 1967, №55, p. 225.
  21. Cohn M.J., Izpisua-Belmonte J.C., Abud H., Heath J.K., Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos, Cell, 1995, v. 80, p. 739-746.
  22. Denner K.,von Versen R. Demineraliizerten Knochenmatrix-tierexmentelle Untersuchugnen and erste klinische Erfahrangen, Habilitationschrift Med. Fakultat der Humboldt Universitat, Berlin, 1991.
  23. Einhorn T. Enhancement of fracture-healing. J. Bone Joint Surg. [Am], 1995, v. 77, p. 940-956.
  24. Gendler E.M. Perforated demineralized bone matrix.A new form osteoinductive biomaterial, J. Biomed. Mater. Res., 1986, v. 20, №6, p. 687-697.
  25. Hosny M., Arcidi C., Sharawy M. Effects of preservation on the osteoinductive capacity of demineralized bone powder allografts, J. Oral. Maxill. Surg., 1987, v. 45, p. 1051-1054.
  26. Huggins C.,Wiseman S., Reddi A.M. Transformation of fibroplasts by allogenic and xenogenic transplants of tooth and bone, J. Exp.Ved., 1970, v. 132, p. 1250.
  27. Iwata M., Nishijima K. Experimental study of two-step grafting of fetal bone: comparison with newborn and influence of MHC, Transplant. Proc., 1994 April 26(2), p. 959-962.
  28. Kakinchi M., Ono K. The relative clinical efficacy of surface decalcified and wholy decalcified bone alloimplants, Int. Orthop., 1987,v. 11, p. 89-94.
  29. Munting E. et al. Effect of sterilization on osteoinduction, Acta Ortop. Scand., 1988, v. 59, 1, p. 34-38.
  30. Reddi A.H., Anderson W.A. Collagenous bone matrix-induced endochondral ossification and hemopoiesis, J. Cell Biol., 1976, v. 69, p. 557-572.
  31. Reddi A.H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats, Proc. Natl. Acad. Sci., USA, 1972, v. 69, p. 1601-1605.
  32. Russell J.L., Block J.E. Clinical utility of demineralized bone matrix for osseous defects, arthrodesis, and reconstruction impact of processing techniques and study methodology, Orthop., 1999, v. 22, №5, p. 524-531.
  33. Senn N. On the healing of aseptic bone cavities by implantation of aseptic decalcified bone, Am. J. Med.Sci., 1899, v. 18, p. 219-243.
  34. Solhein E. Growth factors in bone, Int. Orthop. Sp., 1998, v. 22, p. 410-416.
  35. Solhein E. Osteoinduction by demineralized bone, Int. Orthop. Spr., 1998, v. 22, p. 335-342.
  36. Strates B.S., Tiedeman J.J. Contribution of oseoinductive and osteoconductive properties of demineralized bone matrix to skeletal repair, Europ. J. of Exp. Musc.-Skelet. Res., 1993, v. 2, p. 61-67.
  37. Urist M.R. Bone formation by autoinduction, Science, 1965, v. 150, p. 893-899.
  38. Urist M.R. et al. A bovine low molecular weight bone morphogenetic protein (BMP) fraction, Clin. Orthop., 1982, v. 162, p. 219-232.
  39. Urist M.R., Iwata M. Preservation and biodradation of the morphogenetic property of bone matrix, Theor. Biol. 1973, v. 38, p. 155-156.
  40. Urist M.R., Mikulski A., Lietze A. Solublized and insolublized bone morphogenetic protein, Proc. Nat. Sci. USA, 1979, №76, p. 188.
  41. Urist M.R., Silverman B.F., Buring K. et al. The bone induction principle, Clin. Orthop., 1967, v. 53, p. 243-283.
  42. von Versen R. et al. Verfahren zur Praparation demineralisierter Knochenmatrix, Z. Med. Lab. Diag., 1989, v. 30, p. 154-158.
  43. Yamaguchi A., Ishizuya T., Kintou N et al. Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6., Biochem. Biophys. Res. Commun., 1996, v. 220, p. 366-371.

 

Автор. А.К. Оганесян, В.Г. Мкртчян Кафедра военно-полевой хирургии военно-медицинского факультета ЕрГМУ им. М.Гераци
Источник. Научно-Практический Медицинский Журнал “Медицинский вестник Эребуни”, 3.2004 (19), 48-54, УДК-617.576.001.45
Информация. med-practic.com
Авторские права на статью (при отметке другого источника - электронной версии) принадлежат сайту www.med-practic.com
Share |

Вопросы, ответы, комментарии

Читайте также

Удельный вес гинекологической патологии в формировании групп риска по различным заболеваниям молочных желез

Ключевые слова: молочная железа, мастопатия, факторы риска, группы риска

В последнее время повысился интерес к изучению различных аспектов физиологии и патологии молочных желез (МЖ), обусловленный увеличением частоты развития доброкачественных и злокачественных заболеваний МЖ у женщин [5]. Установлено, что злокачественные новообразования МЖ возникают в 3–5 раз чаще на фоне доброкачественных заболеваний МЖ (ДЗМЖ) и в 30% случаев при узловых формах мастопатии с явлениями пролиферации [2]. Правомерность этого взгляда подтверждает тот факт, что в препаратах, удаленных по поводу рака...

Перинатология, акушерство и гинекология
Особенности офтальмоскопической оценки сосудов сетчатой оболочки у больных с дисциркуляторной атеросклеротической энцефалопатией

Ключевые слова: дисциркуляторная энцефалопатия, офтальмоскопия, ретинопатия, нейроретинопатия

Необходимость нейроофтальмологического исследования глазного дна у больных с сосудистой патологией головного мозга – давно известный факт. Функциональное состояние сосудов ретины наиболее адекватно отражает физиологические возможности организма для кровоснабжение любого органа и в первую очередь головного мозга...

Неврология
Эндопротезирование тазобедренного сустава

Ключевые слова: поврежденный ТБС, искусственный сустав

Операция эндопротезирования ТБС – это замена Вашего анатомически неполноценнoго и функциально несостоятельного, не подлежащего консервативному лечению и восстановлению тазобедренного сустава на искусственный сустав. Изношенный или поврежденный тазобедренный сустав причиняет сильные боли...

Травматология и ортопедия
Связь характера функциональной асимметрии головного мозга с основными механизмами адаптации при гастроэнтерологических болезнях

Ключевые слова: гастроэнтерологические болезни, психосоматические заболевания, стресс, фиксированная установка, функциональная асимметрия.

При некоторых заболеваниях желудочно-кишечного тракта явно прослеживается связь между манифестацией патологического процесса и нарушениями в психоэмоциональной сфере, что указывает на психологическую дезадаптацию [10,12]. Связи между поражением любого органа пищеварительной системы и различными психоэмоциональными факторами исследованы многосторонне [7–9]...

Гастроэнтерология, гепатология Психические и поведенческие расстройства
Лекарственная устойчивость микобактерий туберкулеза у больных казеозной пневмонией

Ключевые слова: остропрогрессирующий туберкулез легких, казеозная пневмония, лекарственная устойчивость микобактерий туберкулеза.

В последние годы отмечается ухудшение эпидемиологической ситуации по туберкулезу. Идет рост показателей заболеваемости и смертности от этой инфекции [9]. На этом фоне отмечается ухудшение клинической структуры вновь выявленных больных туберкулезом органов дыхания. В частности, имеет место учащение случаев остропрогрессирующих форм этого заболевания [6]...

Инфекционные болезни Дыхательная система
Структура смертности больных туберкулезом в республике

Ключевые слова: туберкулез, смертность, причины, группы риска

Введение. В последнее десятилетие в мире наблюдается рост заболеваемости туберкулезом и смертности от него. По данным ВОЗ, ежегодно выявляется около 8 млн больных туберкулезом, умирает от него 5 млн человек, треть населения инфицирована туберкулезом. При этом он поражает мужчин и женщин в наиболее продуктивном возрасте и является ведущей причиной смерти среди инфекционных больных...

Инфекционные болезни
Характер развития, течения и исхода болезней желудочно-кишечного тракта при наличии психотравмы

Ключевые слова: гастроэнтерологические болезни, психоэмоциональный фон, психотравма, стресс.

Патогенез развития болезней желудочно-кишечного тракта довольно разнообразен; при первичном проявлении различных патологий пищеварительной системы прослеживается связь с психологическими факторами [3,12–14]. Ослабление защитных механизмов, также как усиление агрессивных факторов, в значительной степени сопровождается длительным и часто повторяющимся психоэмоциональным перенапряжением [1,4,7,9]...

Гастроэнтерология, гепатология Психические и поведенческие расстройства
Костная пластика при эндопротезировании тазобедренного сустава

Ключевые слова: первичное эндопротезирование, ревизионная артропластика, ацетабулярный кубок.

Проблема костной пластики при ревизионных операциях эндопротезированного тазобедренного сустава приобретает более серьезный и сложный характер в силу двух основных причин...

Травматология и ортопедия
Возможности использования УЗИ у больных с паховыми грыжами при подготовке их к эндовидеохирургической герниопластике

Ключевые слова: ультразвуковое исследование, имплантат, эндовидеохирургическая герниопластика.

По данным P.M.Sayad и соавт. [16], при интраоперационной ревизии брюшной полости (диагностической лапароскопии) выявляется до 11,2% предварительно не диагностированных паховых грыж. R.H.Koehler [9] считает, что точность диагностики двусторонних паховых грыж составляет 80% и предлагает использовать новейшие методы в диагностике данной патологии. A.Moreno-Egea и соавт...

Хирургия
Роль гормональных и иммунных факторов в патогенезе нормогонадотропной овариальной недостаточности

Ключевые слова: гормональные факторы, иммунные факторы, гиперпролактинемия.

Нормогонадотропная овариальная недостаточность гетерогенна по этиологии и патогенезу и может быть проявлением различных заболеваний, которые в 61,5% случаев в той или иной степени связаны с центральными нарушениями регуляции яичников [31,59]. Овариальные факторы обуславливают нормогонадотропную недостаточность в 34,9% случаев...

Перинатология, акушерство и гинекология Обзоры
Осложненный нагноением эхинококкоз печени

Ключевые слова: эхинококкоз печени, эхинококковая киста, нагноение, диагностика, хирургическое лечение.

Гидатидозный эхинококкоз – одно из наиболее тяжелых паразитарных заболеваний человека с преимущественным поражением печени – остается серьезной медицинской проблемой в связи с ростом числа больных в эндемичных районах [1]. Он включен Всемирной организацией здравоохранения и Международным эпидонтическим бюро в список болезней, требующих радикального искоренения. С эхинококкозом борются хирурги, ветеринары, санитарные врачи, им болеют люди наиболее трудоспособного возраста...

Инфекционные болезни Гастроэнтерология, гепатология Хирургия Обзоры
Возможности озонотерапии в процессе лечения гнойно-некротических ран и гангрены стопы у больных сахарным диабетом

Ключевые слова: озон, озонотерапия, диабетическая ангиопатия, гангрена стопы, ампутация.

Введение. По озонотерапии имеются разноречивые, разрозненные публикации. 1840г. можно рассматривать как год открытия озона. Затем на десятилетия многое было забыто, и только во время первой мировой войны некоторые раны и фистулы начали обрабатывать при помощи озоновой смеси (A.Wolff, 1915)...

Хирургия Эндокринология
Естественные пути передачи вирусов гепатитов В и С в условиях семьи

Ключевые слова: гепатит В, гепатит С, семейный очаг, естественные пути передачи.

Вирусные гепатиты, являясь группой различных по этиологии, эпидемиологии и клинике заболеваний, продолжают занимать одно из ведущих мест среди медицинских проблем современности. Этиологическая структура острых и хронических форм этих инфекций представлена 8 вирусами гепатитов: A, B, C, D, E, G, TT, SEN...

Инфекционные болезни
Гемангиоперицитома мочевого пузыря (oбзор литературы и представление клинического случая)

Ключевые слова: гемангиоперицитома, опухоли мочевого пузыря, радикальное лечение.

Гемангиоперицитома является редкой, солитарной и солидной опухолью, берущей начало из перицитов, сократительных перикапиллярных клеток, впервые идентифицированных и описанных Zimmermann в 1923 году. Хотя данная опухоль макроскопически является доброкачественной, она имеет способность к местному вторжению и отдаленному распространению...

Урология Обзоры
Проблема резектабельности распространенного дистального рака желудка

Ключевые слова: рак желудка, комбинированные операции, расширенная лимфодиссекция.

Лечение распространенного рака желудка остается сложнейшей задачей клинической онкологии [1]. Большой опухолевый процесс с/без прорастания в окружающие органы и ткани, поражающий регионарный лимфатический аппарат, нередко становится непреодолимым препятствием для проведения хирургического лечения, что снижает эффективность последующей химио- или лучевой терапии, ухудшая отдаленные и функциональные результаты [6]...

Гастроэнтерология, гепатология Онкология Хирургия

САМЫЕ ЧИТАЕМЫЕ СТАТЬИ